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Abstract

We describe a method for shape-based image database search
that uses deformable prototypes to represent categories. Rather
than directly comparing a candidate shape with all shape entries
in the database, shapes are compared in terms of the types of
nonrigid deformations (differences) that relate them to a small
subset of representative prototypes. To solve the shape corre-
spondence and alignment problem, we employ the technique of
modal matching, an information-preserving shape decomposi-
tion for matching, describing, and comparing shapes despite sen-
sor variations and nonrigid deformations. In modal matching,
shape is decomposed into an ordered basis of orthogonal princi-
pal components. We demonstrate the utility of this approach for
shape comparison in 2-D image databases.

Keywords: Deformable models, deformable templates, combi-
nations of models, shape matching, modal matching.

1 Introduction

Shape categories can be represented as deformations from a
subset of standard or prototypical shapes; it is thought that this
is one plausible mechanism for human perception [4; 18; 30; 33;
40; 45]. This basic premise is appealing for its descriptive par-
simony, and has served as inspiration for many of the prototype-
based representations for machine vision, robotics, and simula-
tion.

In the work described in this paper, our aim is to represent
shape categories for interactive, image database search. Rather
than directly comparing a candidate shape with all shapes in the
database, we propose a method that first indexes shapes in terms
of their relationship to a few shape prototypes. To do this, we
will employ modal matching, a deformable shape decomposition
that allows users to specify a few example shapes and has the
computer efficiently sort the set of objects based on the similarity
of their shape. If desired, shapes can be more closely compared
in terms of the types of nonrigid deformations (differences) that
relate them to a few prototype shapes.

Our approach is related to morphing, a computer graphics tech-
nique that has become quite popular in advertisements. Morph-
ing is accomplished by an artist identifying a large number of
corresponding control points in two images, and then incremen-

tally deforming the geometry of the first image so that its con-
trol points eventually lie atop the control points of the second
image. Using this technique, in-between or novel views can be
generated as warps between example views. This suggests an
important way to obtain a low-dimensional, parametric descrip-
tion of shape: interpolate between known, prototype views. For
instance, given views of the extremes of a motion (e.g., systole
and diastole, or left-leg forward and right-leg forward) we can
describe the intermediate views as a smooth combination of the
extremal views.

All that is required to determine this view-based parameter-
ization of a new shape are: the prototype views, point corre-
spondences between the new shape and the prototype views,
and a method of measuring the amount of (nonrigid) deforma-
tion that has occurred between the new shape and each prototype
view. The prototypes define a polytope in the space of the (un-
known) underlying physical system's parameters. By measuring
the amount of deformation between the new shape and extremal
views, we locate the new shape in the coordinate system defined
by the polytope. This coordinate in prototype space can be used
for database indexing and fast search.

This general approach is related in spirit to the linear-
combinations-of-views paradigm, where any object view can be
synthesized as a combination of linearly-warped example views
of Ullman and Basri [56] and Poggio, et al. [44]. However, it
differs from their proposals in two important ways. First, we are
interested not only in recognizing shapes, but also in describing
the types of deformations that relate them. We want to derive a
low-dimensional parametric representation of the shape that can
be used to recognize and compare shapes, in the manner of Dar-
rell and Pentland [12]. Second, we cannot be restricted to a lin-
ear framework. Nonrigid motions are inherently nonlinear, al-
though they are often “physically smooth.” Therefore, to employ
a combination-of-views approach we must be able to determine
point correspondences and measure similarities between views in
a way that takes into account at least qualitative physics of non-
rigid shape deformation. In computer graphics it is the job of
the artist to enforce the constraint of physical smoothness; in ma-
chine vision, we need to be able to do the same automatically.

To achieve this, we will employ modal matching, a method
for (1) determining point correspondences using a energy-based
model, (2) warping or morphing one shape into another using
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Figure 1: The data needed to build two deformable prototype shape
models. Support maps are shown in (b,e) and edge maps in (c,f). The
two prototype shape models depict (a) a European Hare, and (d) a Desert
Cottontail. Their associated The original color images were digitized
from [1].
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Figure 2: When a new shape is encountered, it is parameterized in terms
of the energy needed to nonrigidly deform the prototype shape models
into alignment with the new shape. The distance to prototypes is ex-
pressed as the square root of strain. The resulting tuple (10:1; 5:7) is
used to represent the shape in a space defined in terms of distance to
prototypes.

energy-based interpolants, and (3) measuring the amount of de-
formation between an object's shape and prototype views[48;
50].

Figure 1 shows the information required to build modal shape
prototypes for two rabbit shape prototypes employed in our im-
age database experiments. In our system a shape is defined by:
a cloud of feature locations (i.e., edges, corners, high-curvature
points) and a region of support that tells us where the shape is.
Given this input, deformable prototype models are built directly
from feature data, using a finite element formulation that is based
on Gaussian interpolants [50]. For efficiency, we can select a sub-
set of the feature data as nodes for a lower-resolution finite ele-
ment model and then use the resulting eigenmodes in finding the
higher-resolution feature correspondences as described in [50].
This subset can be a set of particularly salient features (i.e., cor-
ners, T-junctions, and edge mid-points) or a randomly selected
subset of (roughly) uniformly-spaced features.
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Figure 3: Scatter plot of square-root modal strain energy for rabbit pro-
totypes used in the image database experiment. Each axis depicts the
square-root of strain energy needed to align a shape with a rabbit pro-
totype. Thus each rabbit shape has a coordinate in this space. The rab-
bits are clustered in terms of their 2-D shape appearance: long-legged,
standing rabbits cluster at the top-left of the graph, while short-legged,
seated rabbits cluster at the bottom right. There are two rabbits that
map between clusters, showing the smooth ordering from long-legged,
to medium-legged, to short-legged rabbits in this view-space.

When a new shape is encountered, it is parameterized in terms
of the energy needed to nonrigidly deform the prototype shape
models into alignment with the new shape. Similarity is thus
computed in terms of the amount of strain energy needed to de-
form each prototype to match it to the candidate shape, as illus-
trated in Figure 2. The amounts of deformation are measured
in terms of strain energy and stored as a n-tuple, where n is the
number of prototype shapes employed. In this case, the result-
ing tuple is (10:1; 5:7). The result is a low-dimensional paramet-
ric representation that can be used for efficient shape-based im-
age database search. Rather than directly comparing a candidate
shape with all shape entries in a database, we instead compute
similarity in a distance to prototypes space. Using this method,
we compactly represent a category of shapes in terms of a few
prototype views.

Fig. 3 shows a scatter plot of the two-dimensional “rabbit
space” spanned by two rabbit shape prototypes. The graph's x-
axis depicts the square-root of strain energy needed to align the
European Hare prototype with each rabbit shape, while the y-axis
shows the energy needed to align the Desert Cottontail prototype
with each rabbit shape. Each or the 12 rabbit shapes has a co-
ordinate in this strain-energy-from-prototype subspace. As can
be seen, the rabbits are clustered in terms of their 2-D shape ap-
pearance: long-legged, standing rabbits cluster at the top-left of
the graph, while short-legged, seated rabbits cluster at the bottom
right. There are two rabbits that map between clusters, show-
ing the smooth ordering from long-legged, to medium-legged, to
short-legged rabbits in this view-space.
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We will demonstrate the utility of this approach for compar-
ing shapes in 2-D image databases digitized from children's field
guides and images of hand tools. Deformable shape models will
be built and compared using support and silhouette data. The
methods described in this paper are also useful for recognizing or
classifying motions [49], fusing data from different sensors, and
for comparing data acquired at different times or under different
conditions [50].

1.1 Segmentation

The work reported in this paper addresses issues of shape cate-
gorization, even when shapes within categories can undergo both
rigid and nonrigid motion. Throughout this paper, it was as-
sumed that figure/ground segmentation information can be pro-
vided as input to the modal shape comparison modules. Since
segmentation is not the topic of this paper, our current databases
contain images of unoccluded objects on uniform backgrounds.
Under these circumstances, a c-Means clustering and thresh-
olding technique can be used for foreground/background sepa-
ration [31]. However, for very general query by shape, fore-
ground/background modules will be needed as a front-end to the
system. The first solution would be to use motion and color to
pull out foreground objects. Such figure-ground segmentation
can be done reliably by use of clustering in conjunction with op-
tical flow [5; 13; 54; 57; 58] and/or color information [8; 24; 29;
32; 37; 31].

2 Background and Notation

In the last few years researchers have made some progress to-
ward automatic shape indexing for image databases. The gen-
eral approach has been to calculate some approximately invariant
statistic like shape moments, and use these to stratify the image
database [9; 26; 27; 34; 36; 47].

One problem with this general approach is that it discards sig-
nificant perceptual and semantic information. While indexing
methods provide a means to quickly narrow a search to a more
manageable subset, they often do not provide a method for closer,
direct comparison of how they are related. Rather than discard-
ing useful similarity information by employing only invariants,
we believe that one should use a decomposition that preserves as
much semantically meaningful and perceptually important infor-
mation as is possible, while still providing an efficient encoding
of the original signal [42].

Another important problem with these approaches is that most
are only robust for rigid shapes. Although many things move
rigidly, in many cases this rigid-body model is inadequate. For
instance, most biological objects are flexible and articulated. To
describe these deformations, therefore, it is reasonable to model
the physics by which real objects deform. This rationale led to the
physical modeling paradigm of active contours or snakes[28] and

deformable templates [52; 59]. A snake has a predefined structure
which incorporates knowledge about the shape and its resistance
to deformation. By allowing the user to specify forces that are a
function of sensor measurements, the intrinsic dynamic behavior
of a physical model can be used to solve fitting, interpolation, or
correspondence problems.

While snakes enforced constraints on smoothness and the
amount of deformation, they could not in their original form be
used to constrain the types of deformation valid for a particular
problem domain or object class. This led to the development of
algorithms which include a priori constraints on the types of al-
lowable deformations for motion tracking [6; 7; 10; 16].

Cootes et al.[11; 3] use trainable snakes for capturing the in-
variant properties of a class of shapes, by finding the principle
variations of a snake via the Karhunen-Loeve transform. Unfor-
tunately, this method relies on the consistent sampling and la-
beling of point features across the entire training set and cannot
handle large rotations. If different feature points are present in
different views, or if there are very different sampling densities,
then the resulting models will differ even if the object's pose and
shape are identical.

Keeping these issues in mind, we use the Finite Element
Method to alleviate problems with sampling, and modal analysis
to provide a principled way to select the types of nonrigid defor-
mations needed for flexibly describing shape. In the rest of this
section we provide a brief review of our representation. In addi-
tion, we review our new method of building FEM models with-
out imposing an a priori parameterization, and how to use the
modes of this model to find point correspondences, to align ob-
jects, and to compare their shape. This initial work was applied in
the area of finding corresponding features in static imagery [50]
and serves as the foundation for our new representation for shape
categories.

2.1 Finite Element Method

The major advantage of the finite element method is that it uses
the Galerkin method of surface interpolation. This provides an
analytic characterization of shape and elastic properties over the
whole surface, and thereby alleviates problems caused by irreg-
ular sampling of feature points. In Galerkin's method, we set up
a system of polynomial shape functions that relate the displace-
ment of a single point to the relative displacements of all the other
nodes of an object:

u(x) = H(x)U (1)

where H is the interpolation matrix, x is the local coordinate of
a point in the element where we want to know the displacement,
andU denotes a vector of displacement components at each ele-
ment node. By using these functions, we can calculate the defor-
mations which spread uniformly over the body as a function of
its constitutive parameters.

Solution to the problem of deforming an elastic body to match
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the set of feature points then requires solving the dynamic equi-
librium equation:

M�U+D _U+KU = R; (2)

where R is the load vector whose entries are the spring forces
between each feature point and the body surface, and where M,
D, andK are the element mass, damping, and stiffness matrices,
respectively [2; 43].

2.2 Modal Representation

The FEM governing equations can be decoupled by posing the
equations in a basis defined by the M-orthogonalized eigenvec-
tors of K. These eigenvectors and values are the solution to the
generalized eigenvalue problem:

K�i = !2

i
M�i: (3)

The vector �i is called the ith mode shape vector and !i is the
corresponding frequency of vibration. Each mode shape vec-
tor describes how each node is displaced by the ith vibration
mode. The mode shape vectors are M-orthonormal; this means
that �TK� = 
2 and �TM� = I. The �i form columns in
the transform� and !2

i
are elements of the diagonal matrix 
2.

We will assume Rayleigh damping (i.e.,D = a0M+ a1K), thus
the damping matrix will also be diagonalized by this transform
[2].

This generalized coordinate transform� is then used to trans-
form between nodal point displacementsU and decoupled modal
displacements ~U, U = �~U. We can now rewrite Eq. 2 in terms
of these generalized or modal displacements, obtaining a decou-
pled system of equations:

�~U+ ~D
_~U+
2 ~U = �T

R; (4)

allowing for closed-form solution to the equilibrium problem
[43]. Given this equilibrium solution in the two images, point
correspondences can be obtained directly.

By discarding high frequency modes the amount of compu-
tation required can be minimized without significantly altering
correspondence accuracy. Moreover, such a set of modal ampli-
tudes provides a robust, canonical description of shape in terms
of deformations applied to the original elastic body. This allows
them to be used directly for object recognition [43].

2.3 Modal Matching

Perhaps the major limitation of previous methods is the re-
quirement that every object be described as the deformations of a
single prototype object. For instance, in some schemes all shapes
are represented as deformations from an elliptical or circular pro-
totype [9; 20; 43]. Such approaches implicitly impose an a pri-
ori parameterization upon the sensor data, and therefore implic-
itly determine the correspondences between data and prototype.

 nodes    build physical model    compute eigenmodes
res

Output: strongest
feature correspondences

KU + MU = R

:

 determine FEM mass 
 and stiffness matrices

KU + MU = R

:

 determine FEM mass 
 and stiffness matrices

Kφ  = ω Mφii i
solve generalized

eigenproblem

Kφ  = ω Mφii i
solve generalized

eigenproblem

find correspondence in
generalized feature space

i

match low-order nonrigid 
modes φ  for both shapes

these are FEM nodes  
Input: features

use the matched  φ  
 

i
as coordinate system

Figure 4: Modal matching system diagram (reprinted from [48]).

Furthermore, an elliptical prototype may be inadequate for many
shapes, especially shapes that are not star-connected, or those that
have long protrusions or deep concavities. We would like to avoid
these problems as much as possible, by letting the data determine
the parameterization in a natural manner. To accomplish this we
use the data itself to define the deformable object, by building
stiffness and mass matrices that use the positions of image fea-
ture points as the finite element nodes.

The resulting new modeling formulation is called modal
matching, and is described in detail in [48; 50]. A flow-chart of
our method is shown in Fig. 4. For each image we start with fea-
ture point locations, which are used as nodes in building a finite
element model of the shape. If we are given a support function,
then we can “cut” the finite element sheet into any shape. We do
this by defining a support function that is zero anywhere outside
the shape region, and greater than zero inside the shape region.
Thus the support function can be used to define both the shape
and the thickness of the elastic model. A Gaussian is then cen-
tered at each node. Together, these Gaussians form a basis for
building the Galerkin interpolants of Eq. 1, and are thus used in
constructing FEM mass and stiffness matrices.

When there are possibly hundreds of feature points for each
shape, computing the FEM model and eigenmodes for the full
feature set can become non-interactive. For efficiency, we can se-
lect a subset of the feature data to build a lower-resolution finite
element model and then use the resulting eigenmodes in find-
ing the higher-resolution feature correspondences as described in
[50]. This subset can be a set of particularly salient features (i.e.,
corners, T-junctions, and edge mid-points) or a randomly selected
subset of (roughly) uniformly-spaced features.

We then compute the modes of free vibration � of this model
using Eq. 3. The modes of an object form an orthogonal object-
centered coordinate system for describing feature locations. That
is, each feature point location can be uniquely described in terms
of how it projects onto each eigenvector, i.e., how it participates
in each deformation mode. The transform between Cartesian fea-
ture locations (x; y) and modal feature locations (u; v) is accom-
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plished by using the eigenvectors� as a coordinate basis:

� = [�1 j : : : j �2m] =

2
64
u1
v1
...
um
vm

3
75 (5)

where m is the number of nodes used to build the finite element
model. The column vector �i is the ith mode shape, and describes
the modal displacement (u; v) at each feature point due to the
ith mode, while the row vector ui and vi are the ith generalized
feature vectors, which together describe the feature's location in
the modal coordinate system.

Normally only the n lowest-order modes are used in forming
this coordinate system, so that (1) we can compare objects with
differing numbers of feature points, and (2) ensure that the feature
point descriptions are insensitive to noise. Depending upon the
demands of the application, we can also selectively ignore rigid-
body modes, or low-order projective-like modes, or modes that
are primarily local. Consequently, we can match, describe, and
compare nonrigid objects in a very flexible and general manner.

Point correspondences can now be determined by comparing
the two groups of generalized feature vectors. The important
idea here is that the low-order vibration modes computed for two
similar objects will be very similar — even in the presence of
affine deformation, nonrigid deformation, local shape perturba-
tion, noise, or small occlusions. The points that have the most
similar and unambiguous coordinates are then matched, with
the remaining correspondences determined by using the physi-
cal model as a smoothness constraint [48; 50]. Currently, the
algorithm has the limitation that it cannot reliably match largely
occluded or partial objects.

2.4 Recovering Modal Descriptions

Given point correspondences between two shapes, we can then
determine the deformations required to align them. An important
benefit of modal matching is that the eigenmodes computed for
the correspondence algorithm can also be used to describe the
rigid and non-rigid deformation needed to align one object with
another. Once this modal description has been computed, we can
compare shapes simply by looking at their mode amplitudes or
— since the underlying model is energy-based — we can com-
pute and compare the amount of deformation energy needed to
align an object, and use this as a similarity measure. If the strain
energy required to align two feature sets is relatively small, then
the objects are very similar.

Our task is to recover the modal deformation parameters ~U that
take the set of points from the first image to the corresponding
points in the second. A number of different methods for recover-
ing the modal deformation parameters are described in [48; 50].
We will only give an overview of the strain-minimizing least-
squares method employed for the database experiments described
in this paper.

Given that modal models have been computed for both shapes,
and that correspondences have been established, we can solve
for the modal displacements directly — if correspondence is
known at all nodes. Unfortunately, correspondence is not usually
available at all nodes, and our recovery problem becomes under-
constrained. Since the modal matching algorithm computes the
strength for each matched feature, we would also like to utilize
these match-strengths directly in alignment. As detailed in [50],
we can obtain a constrained weighted least squares solution, if
we minimize alignment error that includes a modal strain energy
term �
2:

~U =
�
�
T
W

2
�+ �
2

��1

�
T
W

2
U (6)

where entries of the diagonal weighting matrix W are inversely
proportional to the affinity measure for each feature match. The
entries for unmatched features are set to zero. The strain term
�
2 directly parallels the smoothness functional employed in
regularization [53]. This measure allows us to incorporate some
prior knowledge about how “stretchy” the shape is, how much it
resists compression, etc. Unmatched nodes to move in a man-
ner consistent with the material properties and the forces at the
matched nodes.

3 Encoding Modal Shape Categories

We will now describe how to use modal models to encode
shape categories. One key advantage in using such a prototype-
based approach is that of data reduction: given the multitude of
possible viewpoints and configurations for an object, we need to
reduce this multitude down to a more efficient representation that
requires only a few characteristic views. Shapes are compared in
terms of their relative distances to prototypes, rather than directly
compared with one another.

3.1 Distance Measures

Once the mode deformation parameters ~U have been recov-
ered, we can compute the strain energy incurred by these defor-
mations, and use this as a similarity metric. In general, we will
want to compare the strain only in a subset of modes S that has
been deemed important in measuring similarity:

�(A;B) =
1

2

X
i2S

~u2
i
!i

2; (7)

where the modal displacements ~ui describe the deformation
needed to align shape A with shape B. It may be desirable to
make object comparisons rotation and/or position independent.
To do this, we ignore displacements in the rigid body modes,
thereby disregarding differences in position and orientation. In
addition, we can make our comparisons robust to noise and local
shape variations by discarding higher-order modes. This modal
selection technique is also useful for its compactness, since we
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can describe deviation from a prototype in terms of relatively few
modes.

If a metric distance function is desired, then this simple energy
measure needs to be modified: strain does not satisfy one of the
three axioms for a metric space[55]. These three axioms are:

1. minimality: �(A;B) � �(A;A) = 0,
2. symmetry: �(A;B) = �(B;A), and
3. triangle inequality: �(A;B) + �(B;C) � �(A;C).

While the strain energy measure satisfies minimality and the
triangle inequality, it does not satisfy symmetry. The strain en-
ergy is not symmetric for shapes of differing sizes; i.e., if the
scales of two objects A and B differ, then the strain energy needed
to align A with B may differ from that needed to align B with
A. The difference in strain will be inversely proportional to the
difference in square of the object scales. Therefore, when com-
paring objects of differing scales we divide strain energy by the
shape's area. When a support map is available, this area can be
computed directly. In the infinite-support case, the area can be
approximated by computing the minimum bounding circle, or the
moments, for the data.

There is an additional property that proves useful in defin-
ing a metric space, segmental additivity: �(A;B) + �(B;C) =
�(A;C), if B is on the line between A and C. To satisfy segmen-
tal additivity, we can take the square root of the strain energy:

�(A;B) =

 
1

2a

X
i2S

~u2i !i
2

! 1

2

; (8)

where a is the shape's area. This results in a weighted distance
metric not unlike the Mahalanobis distance: the modal ampli-
tudes are decoupled, each having a “variance” that is inversely
proportional to the mode's eigenvalue. As a result, this formu-
lation could be used as part of a regularized learning scheme in
which the initial covariance matrix, 
 is iteratively updated to
incorporate the observed modal parameter covariances along the
lines of [19; 17; 44; 38; 39].

3.2 Modal Shape Prototypes

Instead of looking at the strain energy needed to align the two
shapes, we wish to the compare mode amplitudes needed to align
a third, prototype object C with each of the two objects. In this
case, we first compute two modal descriptions ~Ua and ~Ub that
align the prototype with each candidate object. We then utilize
our strain-energy distance metric to order the objects based on
their similarity to that prototype.

We can use distance to prototypes to define a low-dimensional
space for efficient shape comparison. In such a scenario, a few
prototypes are selected to span the variation of shape within each
category. Every shape in the database is then aligned with each
of the prototypes using modal matching, and the resulting modal
strain energy is stored as an n-tuple �, where n is the number of

prototypes. Each shape in the database now has a coordinate in
this “strain-energy-from-prototypes” space; shapes can be com-
pared simply in terms of their Euclidean distance in this space.

We have used strain energy for most of our object comparison
experiments, since it has a convenient physical meaning; how-
ever, we suspect that it may sometimes be necessary to weigh
higher-frequency modes less heavily, since these modes typically
only describe high-frequency shape variations and are more sus-
ceptible to noise. For instance, we could directly measure dis-
tances between modal descriptions, ~U. Our preliminary experi-
ments in prototype-based shape description have shown that this
metric yields comparable performance to the strain energy met-
ric.

3.3 Spanning Categories with Prototypes

In our current image database system, a human operator selects
a few example shapes that approximately span each category. Our
system performance is therefore dependent on the user's ability
to select an adequately diverse and sufficient set of prototypes. It
may be desirable to have a system that could automatically select
prototypes in an unsupervised fashion. An unsupervised learn-
ing or clustering (e.g., k-means, hiearchical clustering, iterative
optimization, Bayes classifiers) could be adapted for automati-
cally selecting the prototype shapes based on modal matching
and modal strain. Using such methods introduces a tradeoff, be-
cause for many pattern classification and learning schemes it is
critical that training data sets be large and diverse enough to char-
acterize the variations within a particular shape class [14]. This
shifts the pressure from a human selecting adequate prototypes
to a human providing sufficient diverse and large training data set
(and providing the number of categories present). Finding these
clusters without prototypes would (in general) require matching
all shapes to all other shapes before optimal clusters could be ob-
tained. In either case, qualities missing from either the training
data or the prototypes may be ignored or misinterpreted.

Another issue is orthogonality. It is unlikely that the selected
shape prototypes will describe orthogonal axes in some idealized
category space. To ensure orthogonality we have employed a
method based on finding the principal components. Given a set of
prototypes, we compute the strain-to-prototypes feature vector �
and its covariance matrix for a randomly selected subset of shapes
in the database. The eigenvectors 	 of the covariance matrix are
used to transform all � into new coordinates in an orthogonalized
parameter space:

�0 = ��
1

2	�; (9)

where � is a diagonal matrix containing the eigenvalues. Com-
puting distances in this new space is equivalent to computing the
Mahalonobis distance in the original strain-to-prototypes space.
As before, variation orthogonal to the space spanned by the train-
ing set will not be represented. This may at first seem like a lim-
itation; however, this property can be exploited to constrain the
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allowable deformations to only those that are statistically most
likely. Furthermore, principal components with eigenvalues less
than a threshold can be discarded to gain a lower-dimensional
parameter space as well as better robustness to noise [21].

The transform to the orthogonalized parameter space is done
as a precomputation (prior to repeated database search). The
method has been tested in experiments with a database of hand-
tool images, as will be detailed in Section 4.

3.4 Comparison Without Direct Correspondence
Computation

In an alternative method, we can measure the distance between
modes and determine how similar two shape's modes are without
actually computing feature correspondences. This can be accom-
plished by measuring the Hausdorff distance between the low-
order mode vectors of the new shape and the low-order modes of
a prototype.

Given two mode vectors �a and �b, one from the first shape A,
and another from the second shape B, we can define the Haus-
dorff distance between these mode vectors as

H(�a; �b) = max(h(�a; �b); h(�b; �a)) (10)

where h(�a; �b) is the directed Hausdorff distance from �a to
�b:

h(�a; �b) = max
�a;i2�a

min
�b;i2�b

k �a;i � �b;i k : (11)

The distance norm is taken between generalized features of Eq.
5: (ua;i; va;i) and (ub;i; vb;i). In our experiments, we have used
a Euclidean norm. This measure requires no specific correspon-
dence between points on the two objects.

In this formulation, we match and compare modes; conse-
quently, for each shape in the database we tally the number of
modes that match each prototype's modes. Typically, mode dis-
tances are computed for only the lowest-order 25% or fewer of
the nonrigid modes. These tallies can be stored as coordinates in
an n-dimensional similarity space; thus, shape similarity is pro-
portional to the Euclidean distance in this space.

Finally, if two shapes have no modes falling within the reason-
able tolerance for similarity, then the shapes will be flagged as
“no similar modes.” This computation can precede direct point
correspondence or alignment computation. The lack of modal
similarity is a strong clue that the shapes are probably from dif-
ferent categories, and therefore, attempting correspondence and
alignment would be unreasonable. This method is used in the
experiments with the hand tool image database described in the
next section.

4 Experiments in Interactive Search

In the first set of experiments, our method is used to struc-
ture an image database of fish. The images in this experimental

(a) (b) (c)

(d) (e)

Figure 5: The five prototype shapes used in the image database experi-
ment: (a) Squirrel Fish, (b) Spot Fin Butterflyfish, (c) Coney, (d) Horse
Eye Jack, and (e) Southern Sennet.

| {z }
prototype

| {z }
fish that had no modes matching this prototype

Figure 6: Six fish had no modes that came within tolerance of matching
modes for the Butterfly Fish prototype in Figure 5(b), and are clearly not
in the Butterfly Fish category.

database were digitized from a children's field guide [22]. Cur-
rently, there are 74 images of tropical fish in the database. Each
image depicts a fish from the canonical viewpoint (side view),
though orientation, position, and scale vary. Each fish is unoc-
cluded and appears on a uniform background. Images for this
and other experiments are available for anonymous FTP from cs-
pub.bu.edu in the compressed tar file sclaroff/pictures.tar.Z.

We used the prototype-based shape description method formu-
lated in Sec. 3.2, where each shape's strain-energy distance to
the prototypes was precomputed and stored for interactive search
later. First, for each image, a support map and edge image was
computed, a finite-support shape model was built, and then the
eigenmodes were determined. For the shapes in this experiment,
approximately 60-70 finite element nodes were chosen so as to
be roughly-regularly spaced across the support region.

Each shape in the database is then modal matched to a set of
prototype images. There were five fish prototypes as shown in
Fig. 5. These prototype images were selected by a human oper-
ator so as to span the range of shapes in the database. For fish
prototypes, we chose prototypes that span the range from skinny
fish (Fig. 5(e)), to fat fish (5(b)), and from smooth fish (5(c)) to
prickly or pointy-tailed fish (5(a,d)).

Not all shapes in the database have similar modes (similarity
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is measured to within a threshold). This information was quickly
deterined by using the Hausdorff distance measure described in
Section 3.4. Sometimes, as is shown in Fig. 6, even shapes within
the same category do not have similar modes. In this particular
case, the modes of the wide-bodied, Butterfly Fish prototype of
Fig. 5 did not match well with the modes of the most narrow-
bodied fish. Using the more efficient Hausdorff distance, we can
quickly determine when modes are nowhere near being similar,
and no attempt at alignment and strain energy computation is
made. Such shapes are simply flagged as being “not at all simi-
lar” to a particular shape prototype, as described in Section 3.4.

The resulting modal strain energy was then used as a similar-
ity metric in Photobook, an image database management system
developed at the MIT Media Lab [42]. Using Photobook, the
user selected the image at the upper left, and the system retrieved
the remaining images sorted by strain energy (shape similarity)
from left to right, top to bottom. The similarity measure is shown
below each image.

The database searches in Figs. 7 through 10 were conducted
using distance in prototype-space. In Fig. 7, a Banded Butterfly-
fish was selected. The matches are shown in order, starting with
the most similar. Based on mode-similarity-distance, the system
retrieved the animal shapes that were closest to the Banded But-
terfly Fish shape (other Butterfly Fish, and other fat-bodied fish).
In the second search, shown in Fig. 8, a Trumpet Fish was se-
lected. In this case, the system retrieved similar long and skinny
fish.

In both searches, the fish judged “most similar” by the sys-
tem appeared on the same page in the field guide. This type of
similarity judgment performance is an encouraging result, since
fish appearing under the same heading are nearly always in the
same taxonomic category, e.g., Groupers, Jacks, Snappers, Por-
gies, Squirrelfishes, Butterflyfishes, Hamlets, or Damselfishes.
In the cases where fish listed under the same heading are not in
the same taxonomic category it is because they were grouped to-
gether due to some shape similarity, e.g., “Slim-bodied fishes” is
the heading under which the Trumetfish, Bluespotted Cornetfish,
Balao, Needlefish, Ballyhoo, and Houndfish appear.

Fig. 9 continues this example, this time searching for shapes
most similar to a Crevalle Jack and a Dog Snapper. Again, the
matches are shown in order, starting with the most similar. The
shapes most similar to a Crevalle Jack are other fish with simi-
lar body and tail shapes. In this case, the system rates Jolt Head
Porgy over a closer relative (Yellow Jack). This is fairly reason-
able, since all are closely-related, open water fish.

In the final example, Fig. 10, the user selected a Dog Snapper.
Again the system rated fish from the same pages in the field guide
as “most similar.” In each example, search and display took less
than a second on an HP 735.

Database queries were performed for each of the 72 fish im-
ages in the database for which there were other fish under same

Figure 7: Searching an image database for similarly-shaped fish. In this
example, distance in mode-similarity-space was used as a shape similar-
ity metric. The figure shows the first of four examples of the ordering
that resulted in searches for similar fish: a Banded Butterfly Fish. The
matches are shown in order, starting with the most similar. Based on
mode-similarity-distance, the system retrieved the animal shapes that
were closest to the Banded Butterfly Fish shape (other Butterfly Fish,
and other fat-bodied fish). The fish judged “most similar” by the system
appeared on the same page in the original field guide book, and in the
same taxonomic class.

heading in the field guide. Overall, another fish under the same
heading in the field guide was judged as most similar 71% of
the time. To gain enhanced performance in capturing animal tax-
onomies, we suspect that modal matching would need to be part
of a combined system that includes local feature and color infor-
mation.

For comparison, the same 72 queries were performed using
moment invariants based on second- and third-order moments
[15]. To gain better performance, the covariance matrix for
the seven-dimensional feature vectors was computed and shapes
where ordered in terms of their Mahalonobis distances to the se-
lected shape. In this case another fish under the same heading in
the field guide was judged as most similar 57% of the time.
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Figure 8: Searching an image database for similarly-shaped fish (con-
tinued): Trumpet Fish. The matches are shown in order, starting with the
most similar. In this second search the system retrieved similar long and
skinny fish. that are on the same page in the original field guide.

4.1 Evaluating Retrieval Accuracy using AVRR

Thus far retrieval performance has been measured in terms of
the percentage of times that a shape in the same category is re-
trieved as “most similar” over a number of trials. However, the
Photobook system, and other query by example (QBE) image
database systems (IBM, Virage, Jacob) provide a list of possi-
ble matches ordered in terms of their similarity distance from the
example image. This is in contrast to retrieval systems based on
“exact match.”

In “exact match” systems the standard measures of precision
and recall can be employed [46]. However, as noted by Faloutsos,
et al. [20], systems that offer a list of items sorted by similarity
do not fall under the rubric of exact matching. We need a perfor-
mance measure that embodies the positions in which target items
appear in the retrieval. Ideally, if there were a total of n items
of the same category in the database, then these n items would
appear in the first n positions for a similarity-based retrieval.

To evaluate retrieval performance we will employ the normal-
ized recall metric developed to evaluate IBM's QBIC [20]. As-

Figure 9: Ordering that resulted in searches for similar fish (continued):
a Crevalle Jack. The shapes most similar to a Crevalle Jack are other fish
with similar body shapes and pointed tails (other open water fish).

sume that the number of categories, shapes per category, and cat-
egory membership for each shape are known. We can measure
the average rank of all relevant items (AVRR) for a particular re-
trieval and then compare this with the ideal average rank (IAVRR)
when all n images from a particular shape category appear in the
first n positions. For a database that contains n shapes in each
category IAVRR = n

2
. In general, the equation for ideal average

rank is

IAVRR =
1

m

cX
i=1

ni
2

2
; (12)

where m is the total number of shapes in the database, c is the
number of categories, and ni is the number of shapes in the ith

category. The AVRR is computed based on the actual ordered
ranking of shapes for each database retrieval. Thus the ratio of
AVRR to IAVRR can be used to give a measure of average re-
trieval accuracy over a number of experimental trials.

Using this measure, the retrieval accuracy was evaluated for the
previously described experiments with the fish image database in
Photobook. The IAVRR for this database was 3.4 and the AVRR
was 8.9. This means that on average the relevant image appears
in the ninth position. The ratio of AVRR/IAVRR = 2.6. In con-
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Figure 10: Ordering that resulted in search for fish similar to a Dog
Snapper. The system rated fish from the same page in the field guide
as “most similar.” In each example, search and display took less than a
second on an HP 735.

trast, the AVRR was 17.7 and AVRR/IAVRR = 5.2 when moment
invariants were used.

4.2 Tool Image Database

In a second set of image database experiments we used a
database of 63 grayscale images of real and toy hand tools. There
were 21 images from each of three tool categories: wrenches,
hammers, and crescent wrenches. Figure 11 shows example im-
ages taken from this database. Note that because the toy tools
were made of plastic, they could be bent in various ways. Fur-
ther, tools appeared in a number of orientations and/or scales,
with varying lighting. The tools were placed on a uniform back-
ground so that a simple fuzzy c-Means clustering technique could
be used for foreground/background separation [31].

For the shapes in this experiment, approximately 70-80 finite
element nodes were chosen so as to be roughly-regularly spaced
across the support region. Mode amplitudes for the first 32 modes
were recovered and used to warp each prototype onto the other
tools. As in the fish database experiments, the Hausdorff distance
method was used to cull cases where no modes matched. The

Figure 11: Some example images from the hand tools experimental
image database. There are 63 images of children's toy tools and adult
tools in the database, 21 each of category hammer, single-ended wrench,
and double-ended wrench. Because the toy tools were made of plastic,
they could be bent in various ways. Further, tools appeared in a number
of orientations and/or scales, with varying lighting.

comparisons were made translation and rotation invariant by ig-
noring displacements in the rigid body modes. Comparisons were
made scale invariant by recovering the scale factor before non-
rigidly warping the shape to each prototype [25]. Total CPU time
for database precomputation (match, align, and store n-tuple) av-
eraged 3 seconds per prototype on an SGI Indigo2 workstation.

Matching experiments were then conducted using the coordi-
nates produced via the orthogonalization procedure in Section
3.2. Database queries were performed for each of the 63 tool
images in the database. Overall, another tool from the same cate-
gory was judged as most similar 94% of the time, compared with
86% for the moments-based method.

For orthogonalized strain-from-prototypes, the AVRR was
18.2; this means that the average relevant image appears in
roughly in the fifteenth position. The IAVRR for this database
is 10:5. Thus the ratio of AVRR/IAVRR = 1:7. The moments-
based method produced AVRR = 23:1 and AVRR/IAVRR = 2:2.
As another point of comparison, performance for shape-based
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Figure 12: Graph showing how the number of prototypes affects the
average performance for retrieval given a database of 63 handtools, 21
tools from each of three categories. For each trial, n prototypes were
chosen at random from the database, and searches conducted in orthog-
onalized strain-to-prototypes space. For each n there were up to 1000
trials. Database queries were performed for each of the 63 tool images
in the database. With only one prototype, another tool from the same
category was judged as most similar 56% of the time. As the number of
prototypes reached four, performance began to level off.

search in QBIC was reported to have a AVRR/IAVRR ratio of
1.8 in [20] for a database of 777 airplane silhouettes coarsely cat-
egorized by viewpoint and overall shape properties.

4.3 Number of Prototypes and Retrieval Accuracy

Using the tool image database, an experiment was conducted
to evaluate retrieval accuracy as a function of the number of pro-
totypes used. Multiple trials were conducted using between one
and ten prototypes. These n prototypes were selected at random
(uniformly distributed), in 1000 trials for each n. Average match-
ing perfmance was evaluated using the coordinates produced via
the orthogonalization procedure in Section 3.2. In each trial,
database queries were performed for each of the 63 tool images
in the database.

Figures 13 and 12 show the resulting performance curves. The
graph in Figure 12 shows how the number of prototypes affects
the average performance for database queries performed for each
of the 63 tool images in the database. With only one prototype,
another tool from the same category was judged as most simi-
lar 56% of the time. As the number of prototypes reached four,
performance began to level off at approximately 90%.

The graph in Figure 13 shows how the number of prototypes
affects the average AVRR for retrieval of the 21 handtools in the
same tool category. With only one prototype, the AVRR aver-
aged 28.1. The average performance leveled out at 5 prototypes
where AVRR = 21:9. The ideal AVRR would be 10.5. The ratio
AVRR/IAVRR is greater than two.
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Figure 13: Graph showing how the number of prototypes affects the
average rank (AVRR) for retrieval of the 21 handtools in the same tool
category. For each trial, n prototypes were chosen at random from the
database, and searches conducted in orthogonalized strain-to-prototypes
space. For each n there were up to 1000 trials. With only one prototype,
the AVRR averaged 28.1. The average performance leveled out at 5
prototypes where AVRR = 21:9. The ideal AVRR would be 10.5.

5 Discussion

One of the main motivations for this research was to pro-
vide improved shape representations for query by image content.
While the shape comparison algorithms developed in the machine
vision and pattern recognition communities can serve as a good
starting point for developing shape-based image database search
methods, retrieval by shape is still considered to be one of the
most difficult aspects of content-based image search [20].

IBM's Query By Image Content system (QBIC) [20; 36] is
perhaps the most advanced image database system to date; it is
available as a commercial product. QBIC can perform searches
that combine information about shape, color, and texture. As in-
put, the system assumes non-occluded, planar shapes that are rep-
resented as a binary image. Shape-based search in QBIC cannot
deal well with nonrigid deformation. Algebraic moment invari-
ants [51] were intended for modeling rigid objects only. In addi-
tion, the higher moments are dominated by points that are farthest
from the centroid; therefore, they are highly susceptible to out-
liers. Similar moments do not necessarily guarantee perceptually
similar shapes.

Other shape indexing schemes have been based on local
boundary features [34; 23], and are therefore not very robust to
noise, scale, and sampling. Another system, proposed by Chen
[9] identified 2-D aircraft shapes using elliptic Fourier descrip-
tors. Because it is Fourier descriptor-based, Chen's system suf-
fers from problems with sampling and parameterization. Jagadish
introduced a multidimensional indexing scheme that offered the
advantage that it could index images much faster than previous
techniques [27]. However, the system had limited descriptive
power, because the shape similarity measure was too simple (the
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area difference between two shapes) and the underlying shape
representation was polyhedral (representing shapes in terms of
K-d-b trees of overlapping minimum bounding rectangles).

In contrast to previous formulations, the FEM integrals used in
the modal model formulation provide greater robustness to sam-
pling, outliers, and missing data. Furthermore, modal models
provide quasi-invariance to different types of nonrigid deforma-
tion, while also providing an ordered, orthogonal, encoding of
the nonrigid deformation that relates a candidate shape to a shape
prototype or shape category.

5.1 Matching Human Similarity Judgments

For a image database search to be useful, it is critical that the
shape similarity metric be able to match human judgments of
similarity. This is not to say that the computation must some-
how mimic the human visual system; but rather that computer
and human judgments of similarity must be generally correlated.
Without this, the images the computer finds will not be those de-
sired by the human user.

For human shape similarity judgments, sometimes scale and
rotation invariance are important, other times not [35]; it is there-
fore desirable to duplicate this performance in our image database
search algorithms. In QBIC, a weighted metric allows for subset
selection, and thus it provides selective invariance to size and ori-
entation [20]. Modal matching also provides this invariance to
size and orientation, but unlike any of the shape representations
used in QBIC, modal representations can also be made invariant
to affine deformations, and thus selectively invariant to changes
in camera viewpoint. More importantly, the modal representa-
tion provides deformation “control knobs” that correspond qual-
itatively with human's notions of perceptual shape similarity [4;
41]. Shape is thought of in terms of an ordered set of deforma-
tions from an initial shape: starting with bends, tapers, shears,
and moving up towards higher-frequency shape variations.

5.2 Speed of Image Database Search

Another concern in image database search is the computa-
tion speed. Shape-based image database search must be efficient
enough to be interactive. A search that requires minutes per im-
age is simply not useful in a database with millions of images.
Furthermore, interactive search speed makes it possible for users
to recursively refine a search by selecting examples from the cur-
rently retrieved images and using these to initiate a new select-
sort-display cycle. Thus users can iterate a search to quickly
“zero in on” what they are looking for.

As demonstrated in our image database experiments, searches
on databases over one hundred images take less than a second
(including image display) on an HP 735 workstation. In addition,
search time in our system scales linearly on the number of shapes
in the database. Finally, it is possible that the notion of build-

ing up prototype-based modal categories could be exploited to
structure databases into taxonomic trees, thereby improving the
computational complexity of image database search.

6 Conclusion

A new image database search method has been described. The
method uses strain energy from deformable prototypes to encode
shape categories. Retrieval accuracy of this approach has been
demonstrated in a series of experiments with image databases of
animals scanned from children's field guides and of deformable
hand tools digitized via a video camera. In these experiments,
the method performed consistently better than search on moment
invariants. Experiments were also conducted to evaluate retrieval
accuracy as a function of the number of prototypes used. Rela-
tively few prototypes were needed to produce stable performance
when a new orthogonalization scheme was employed.
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